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ABSTRACT 

A critical analysis of the kinetic evaluation from a single non-isothermal experiment using 
the computerized method of Skvara and Sestak, is presented . Theoretical data with varying 
amounts of random errors has been used to test the reliability of such a procedure. This has 
shown that questionable results arise if experimental data of worse than k 2.5% error is used. 
The method has also been tested using experimental data for the degradation of polystyrene 
and a polyamide. Although we recommend this procedure for a quick, kinetic analysis from 
any thermal analysis technique, additional kinetic studies are necessary owing to the inherent 
shortcomings of non-isothermal kinetics and the vulnerability of the present method to small 
errors. 

INTRODUCTION 

It is often desirable to analyze thermal analysis data to obtain the 
activation energy, Arrhenius factor, and possible mechanism or order of 
reaction. This data, together with other information obtained from these 
studies, is very useful for a better evaluation of practical processes involving 
condensed phases. Examples of such studies have been reviewed previously 

HI. 
The types of processes which can be studied include decomposition, 

curing, polymerization and sintering, etc. Frequently, kinetic studies are 
carried out using data from several isothermal experiments or from a series 
of rising temperature, i.e. non-isothermal experiments, using different heat- 
ing rates [l]. However, many methods are available which only require data 
from a single, rising temperature experiment [2]. The aim of this work is to 
describe the development of a computer program using one of these meth- 
ods. An analysis of the effects of experimental error is presented, using both 
theoretical and experimental data. This kind of evaluation of the method has 
not been described elsewhere, but is believed to be essential before kinetic 
parameters can be quoted with confidence. 

0040-6031/88/$03.50 0 1988 Elsevier Science Publishers B.V. 
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THEORETICAL BACKGROUND 

In general, most methods of kinetic analysis for thermal analysis data 
begin from the Arrhenius equation 

k=A exp(-E/RT) (1) 

and a rate expression 

g = kf(cy) (2) 

The first equation links the activation energy E and the specific rate 
constant k by the temperature T gas constant R and Arrhenius factor A. 
Equation (2) is analogous to formal kinetic expressions except that, instead 
of using concentration, the fraction converted cx at time t is used. Thus 
experimental data must first be normalized between 0 and 1. 

By substituting the heating rate ,8 = dT/dt and solving eqns. (1) and (2) 
for k it can be shown that 

da P 
-- =A exp(-E/RT) 
dTf(4 

The basis of the method described here is an integrated form of eqn. (3) 
[336], i.e. 

/“[l/f (a)] da = k’$ exp( - E/RT) dT (4) 
0 

The left-hand side of this equation is known as g( cu), and can be derived for 
each f(a) used. In order to solve the right-hand side, however, it is necessary 
to substitute x = E/RT, and its associated derivative 

dT -E -=_ 
dx Rx2 

(5) 

so giving 

where p(x) = - /x-~ exp( -x) dx, this being known as the temperature 
integral. The equation is normally quoted in its logarithmic form, i.e. 

In g(cy) =ln 5 +ln p(x) 
i 1 

(7) 

and is the basis of many so-called integral methods. In general, these 
methods are fairly sensitive to changes in mechanism, i.e. g(a), but are 
complicated by the temperature integral. 
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There are many series expansions for p(x) and comparisons of these 
[7-91 have shown the following to be most accurate. 

P(X) = 
exp(-4 
x(x + 1) ( 

1 

l- (x:*) + (*+2)l(x+3) + **. (x+2)...(x+n) i 

(8) 

In practice this is normally used to a maximum of five terms. 
Since In p(x) is a logarithm of an exponential function of temperature, 

then a plot of In p(x) versus l/T will be linear. Thus, because ln( AE/PR) 

is a constant (if the reaction is isokinetic), then from eqn. (7) a plot of In 
g( CY) versus l/T will also be linear if the “correct” g( CX) is used. Hence, the 
first step in this form of analysis is to test each g( CY) to obtain the best fit to 
a straight line for In g(a) versus l/T. The activation energy can then be 
calculated by differentiating In p(x) as follows 

din P(X) 1 

dx P(X) 

which, by definition, is 

= (&JiF) 

dp(x) 
dx 

(10) 

or 
-1 = 

x2 ““p(x) 

Since x = E/RT this becomes 

d In P(X) = -E 

W/T) Rx2 e”p(x) 

(11) 

(12) 

Thus the second step, having obtained two parallel lines [In p(x) and In g 

W 

Fig. 1. Kinetic plot for the calculation of A and E. 
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(CX) versus l/T] is to determine the slope (Fig. 1). In practice it is the In 
g(a) versus l/T plot that must be used since p(x) cannot be accurately 
defined initially. Thus the slope is substituted into eqn. (12) to calculate E. 
At first a “guess” is made for E in the equation x = E/RT and then a series 
of iterative loops are performed, so enabling E to be calculated to a greater 
accuracy. 

Having calculated E the third step is to find the value of A. This is 
calculated from the distance between the two lines, as shown in Fig. 1. An 
algorithm describing the entire process has been described by Skvara and 
Sestak [lo] and this was used as a basis for the program developed here. 

DESCRIPTION OF THE PROGRAM 

The program algorithm is shown in Table 1. This is similar to that 
described by Skvara and Sestak [lo] except that they considered three a-T 

regions; the initial ((Y = 0.03-0.35) the intermediate ((Y = 0.3-0.8), and the 

TABLE I 
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TABLE 2 

Kinetic models used in the program 

Model Integral function of a 
No. g(a) = 

1 2[1- (1 - cy)“2] 

2 3[1- (1 - (r)“3] 
3 3/2[1 -(l- (u)~‘~] 

4 -ln(l- a) 

5 (1-a)ln(l-cu)+a 

6 [(l+ (Yy - 112 

7 3/2[1-2/3a -(l - (Y)~‘~] 

8 3/2[1/(1- (~)l’~ - 112 

9 2 lP2 

10 exp[ - (1 - cu)] - exp( - 1) 

final (CX = 0.7-0.97). The linearity of each lng(cu) versus l/T plot was 
examined over each region and so it was possible to obtain three different 
mechanisms, each describing a different stage of the reaction. In our 
experience it is preferable to inspect manually each lng( a) versus l/T plot 
across the entire experimental range and to then repeat the kinetic analysis 
over any regions of linearity which are apparent. The best fit was given by 
the lowest standard deviation as measured in the x direction [ll]. 

For the calculation of E an initial guess must be made to begin the 
iterative loop. This is taken as the slope of the plot divided by the 
mid-temperature of the region of interest. The iterative loop is continued 
until two successive determinations agree to within 0.3 kJ mol-‘. 

The mechanisms examined by this program include those shown in Table 
2. A drawback of this form of integral method is that certain types of 
function become analytically indistinguishable. An example is the Avrami 
[12] type of equation, shown here as 

(-ln(1 - a))” = kt (13) 

This is plotted as n ln[ - ln(1 - CX)] versus l/T and so different values of n 
simply shift the line and the resultant data must be treated with caution. If 
functions of this type are found to give the best fit, then the values of E and 
A must be examined. Some values of n will give completely unrealistic E 

and A values and so least a range of values of n can be settled on. Other 
functions which give rise to this problem include 

(Y” = kt 

and 

(14) 

(1 - (1 - cy)“*)” = kt (15) 
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Theoretical data 

Theoretical data [13] obtained by assuming E = 125 kJ mol-‘, 1nA = 15.4 
(A; mm’) and a heating rate of 1 K min-‘, was used to test the program. 
The data was calculated using eqn. (6) to solve for (Y at temperature intervals 
of 2 K starting at around 400 K. Table 3 shows the result of analyzing the 
data using the program developed here. In each case the appropriate 
function gave a plot of lowest standard deviation (s.d.). The second ranked 
function data is also shown and, in most cases, the standard deviation is 
around an order of magnitude higher. This confirms that the program 
operates as intended. 

Brown and Galwey [14], in a study of the distinguishability of kinetic 
models in isothermal kinetic analysis, discussed the source and magnitude of 
experimental errors. They conclude that in any thermal analysis study, the 
determination of (Y will give rise to errors of the most significance. By 
adding a random error to theoretical data they show that the distinguishabil- 
ity between kinetic models can be impaired. At error levels of > 5% the 
incorrect model may be selected using their method. For this study we have 
randomly incorporated up to *2.5%, f 5% and t 10% errors into the (Y 
values for the ten test functions and tabulated the first and second ranked 
functions (Tables 4-6). The data obtained show that at a f2.5% error level 
the standard deviations for the first and second ranked functions are 
extremely close and in one case (function 10) are coincident. At f 5% and 
f 10% error levels an incorrect function is frequently ranked first. This 
demonstrates that experimental data must be accurate to better than 97.5% 
in order to obtain meaningful kinetic parameters using this rising tempera- 

TABLE 3 

Test of a kinetic program using theoretical data 

Test function a Second ranked function 

Model E InA s.d. Model E InA s.d. 

No. (kJ mol-‘) (X 1OP) No. (kJ mol-‘) (x10-6) 

1 125.7 15.9 0.0669 5 35.3 244.8 0.849 

2 125.7 16.1 0.0662 2 14.6 125.2 2.89 

3 125.7 15.8 0.0463 5 36.8 263.6 0.254 

4 125.7 16.4 0.0897 1 12.4 230.6 9.52 

5 125.6 15.3 0.117 5 4.8 122.1 0.871 

6 125.7 14.2 0.0885 9 0.1 26.2 1.85 

7 125.6 14.8 0.104 7 5.4 126.2 1.69 

8 125.9 15.1 0.581 1 3.1 102.8 22.9 

9 125.7 16.5 0.00747 5 74.8 581.0 0.429 

10 125.7 15.2 0.0418 1 34.6 254.5 0.715 
- 

” From Table 2. 



225 

TABLE 4 

Test of a kinetic program using theoretical data with a 2.5% random error 

Test function 
No. 

First ranked function Second ranked function 

No. E s.d. No. E s.d. 
(kJ mol-‘) (x10-y (kJ mol-‘) (x10-y 

1 1 124.9 1.11 7 256.8 1.26 
2 2 124.5 1.82 1 116.7 3.36 
3 3 124.9 1.01 5 260.4 1.02 
4 4 123.6 3.58 8 304.1 7.79 
5 5 124.9 1.96 3 57.6 2.42 
6 6 124.8 1.52 9 26.0 2.75 
7 7 124.5 2.30 3 54.3 2.70 
8 8 125.3 21.8 4 48.5 22.7 
9 9 124.9 0.39 6 505.6 0.42 

10 10 125.0 1.02 3 161.1 1.02 

TABLE 5 

Test of a kinetic program using theoretical data with a + 5.0% random error 

Test function 
No. 

First ranked function Second ranked function 

No. E s.d. No. E s.d. 
(kJ mol-‘) (x10-y (kJ mol-‘) (x10-y 

1 7 255.5 2.16 1 124.2 2.21 
2 2 123.7 3.43 1 116.0 4.15 
3 5 259.0 1.98 3 124.0 2.02 
4 4 122.5 6.54 2 104.5 8.96 
5 5 124.3 3.90 3 57.3 4.42 
6 6 124.0 3.03 9 25.7 4.04 
7 3 53.8 4.49 7 123.4 4.53 
8 8 120.9 14.1 4 47.1 21.8 
9 6 502.3 0.69 9 124.0 0.79 

10 3 115.4 1.81 5 241.4 1.83 

TABLE 6 

Test of a kinetic program using theoretical data with a k 10% random error 

Test function 
No. 

First ranked function Second ranked function 

No. E s.d. No. E s.d. 
(kJ mol-‘) (x10-6) (kJ mol-‘) (X 10-6) 

1 3 117.3 4.16 5 244.8 4.22 
2 1 249.8 5.96 2 125.2 5.98 
3 3 126.5 3.22 5 263.6 3.22 
4 2 116.1 6.41 1 230.6 6.43 
5 9 20.2 7.20 5 122.1 7.57 
6 6 126.0 5.84 9 26.2 5.94 
7 10 61.2 9.54 7 126.2 9.70 
8 2 49.1 15.8 1 102.8 18.1 
9 3 285.1 1.82 5 581.0 1.82 

10 2 126.4 4.15 1 254.5 4.21 
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ture kinetic method. This may also apply to other methods, many of which 
use a more approximate form of p(x) than that used here and so already 
incorporate a larger degree of error. 

Experimental data 

Polystyrene 
The TGA and DSC data, obtained by heating polystyrene in argon, was 

analyzed across the entire decomposition process. The lng(a) versus l/T 
plots indicated an isokinetic process and Avrami type expressions [eqn. (13)] 
to have the best fit with the standard deviations of 3.74 x lop7 and 
6.20 x lo-‘. Comparison of these values with those obtained using theoreti- 
cal data (Tables 3-6) suggests that the experimental error is < & 2.5% and 
so the kinetic parameters can be used with confidence. Assuming n = 1, then 
the obtained data is shown in Table 7 together with literature data for this 
process. Polystyrene has been studied by several investigators [15] and 
shown to have an activation energy of between 155 and 254 kJ mol-’ with a 
first-order mechanism [i.e. n = 1 in eqn (13)]. For n = 1 the program tested 
here gave a value of E = 264 kJ mol-’ for TGA and E = 308 kJ mol-’ for 
DSC. However, as Khanna and Pearce [16] noted, the exact value will 
depend on the precision of computation, the range used and the experimen- 
tal variables. They obtained a value of E = 224 kJ mol-‘, for a first-order 
mechanism. 

Polyamide 
The second set of experimental data used was for the TGA of a poly- 

amide (poly-1,3-phenyleneisophthalamide), shown in Fig. 2 [15]. The data 
were normalized over the first step, i.e. - 300-510 o C, assuming that this 
would be a total of 20% weight loss. Analysis of this step showed that 
functions of the type shown by eqn. 13 had the lowest standard deviation 
(6.02 X 10e6). However, as can be seen by the plot of lng(cr) versus l/T for 
a first-order expression (Fig. 3), it is clear that there are two linear regions. 
Re-analyzing the data over these two regions results in a lower standard 
deviation for both the first region (3.43 X 10p6) and the second region 
(5.75 x 10p7), with an order type expression remaining as the best fit. The 
standard deviations for the lng( (r) versus l/T plot (Fig. 3), when compared 
to those obtained for the theoretical data (Tables 3-6), suggest that the 
experimental data can be used with confidence. The first region corresponds 
to a decomposition range of O-12% when considering the total shown in Fig. 
2. The activation energy was calculated as 214 kJ mol-’ for the first-order 
expression (Table 7). Literature data [16] for the same material reports a 
value of 215 + 8 kJ mol-‘, over the range O-15%. This was found using the 
method of Ozawa [17], which does not require a knowledge of the mecha- 
nism. The second region, observed using the procedure described here, gave 
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Fig. 2. TGA for the degradation of a polyamide. 

-21 I I I I 

1.27 1.32 1.37 1.42 1.47 1 i2 

l/T, x 1O3, K-’ 

Fig. 3. Plot of In g(a) versus l/T for a polyamide. 

an activation energy of 162 kJ mol-‘. This region had not been previously 
detected and this suggests that this method of kinetic analysis may be more 
versatile and sensitive than many others. 

DSC data for the degradation of the polyamide under identical conditions 
to the TGA experiment, was analyzed in a similar manner. However, the 
standard deviation values obtained are somewhat large, suggesting that 
caution should be used in interpreting the results. Indeed, the model selected 
is a second-order type, which does not agree with either the TGA results or 
the previously published data (Table 7). This confirms that attention should 
be paid to the standard deviation values, as with the large errors an incorrect 
mechanism may be selected. 

CONCLUSIONS 

The development of a kinetic analysis method must include a study of the 
effects of possible errors in the experimental data before results can be used 
with any confidence. The results of such a study described here suggest that 
experimental errors of > + 2.5% may lead to incorrect kinetic parameters 
being obtained. 
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